Front of Plant Outreach Meeting

April 5, 2017

Agenda

- Introduction (Teresa)
- Front of Plant Project Overview (Bill)
- Procurement Process and Stages (Teresa)
- Key Parts of the RFQ (Bill)
- Estimates, Budgets and Pricing (Teresa)
- Early Focus Areas (Stage 1) (Bill)
- Available Information (Teresa)
- Questions (Please ask along the way)

SVCW FoP Project Team

- SVCW Owner's Representative- Teresa Herrera
- Project Manager Bill Bryan
- Owner's Advisor Charlie Joyce Brown and Caldwell
- Connecting project Gravity Pipeline
 SVCW Bruce Burnworth Project Manager
 Owner Advisor Mark Minkowski, Kennedy/Jenks

Front of Plant Project – Overview

- Background
- Project Elements
- Hydraulics

- Diurnal and Seasonal Equalization

- Status of EIR, Permits and Easements
- Availability of SVCW Funding

Silicon Valley Clean Water

101

INTERSTATE CALIFORNIA 280

Problem we need to Solve

- 4 pump stations with a Booster Pump Station and Influent Lift Pumps
- Joints every 12' in RCP Force Main thru YBM
 - Design useful life = 25 to 50 years (ASCE; EPA)
 - Pipe is 45 years old
 - Currently operating at 2.5 times design pressure
 - 64 leaks so far; rate of failure is increasing
 - Leaks are time-consuming, disruptive and expensive to repair . . . potentially catastrophic.

Pipe cracked (not a joint separation)

Raw sewage flowing from separated and offset joint

Adjacent to airport ... valve bonnet blew off ...

... raw sewage into the air

Major Failures Corrosion + Surge

Numerous Alternatives Considered

2012/2014

Pump Station Upgrades + Open Cut in Street Open Cut in Levee Lay in Slough Lay in Lagoon Microtunnel (shallow)

Bavshore Fwy

Industrial Way

2014/2015/2016

Microtunnel (deep) Tunnel Boring Machine (deep) From SVCW Plant From near Airport Sliplining (w/ bypass) Parallel Smaller Pipes Pipe Bursting (w/ bypass) Replace in place (w/bypass) Rehab/Replace 3 Pump Stations New RLS

Middlefield Rd

Geologic Profile

Gravity Pipeline Entering FoP

Front of Plant Facilities

FoP Facilities

- Receiving Lift Station
- Headworks
 - Screens
 - Grit Removal
- Influent Connection Pipe to WWTP
- Odor Control
- Electrical Power Infrastructure
- Civil Site Work

Front of Plant Facilities

- Receiving Lift Station
- Headworks
 - Screens
 - Grit Removal
- Influent Connection Pipe to WWTP
- Odor Control
- Electrical Power Infrastructure
- Civil Site Work

Radio Roa

Odor Control 10 AC Site Influent Connection Headworks Receiving Lift Station Electrical Infrastructure Front of Plant

Front of Plant – Prep work 2017

- Lime stabilized
 - areas
- Roadway
 Improvements
- Construction
 Fencing
- •Grading & Stormwater Drainage

2017 Site Preparation Effort

- All of the above completed under separate DBB in 2017
- PDB entity must field verify site conditions
- Electrical utilities are to be supplied by PDB entity

Current Project Concept

 SVCW will share the studies and alternatives developed to-date including summary planning reports

• We expect to work collaboratively with the PDB during Stage 1 to refine, revise or change these concepts to best meet SVCW objectives

Design Progression during Preconstruction

 Selected PDB Entity is encouraged to propose alternative designs

• Selected PDB Entity is encouraged to propose cost savings and optimization improvements

 Selected PDB Entity must develop collaborative relations with SVCW O and M

Front of Plant Facilities

Receiving Lift Station

Headworks

Headworks

Headworks

Odor Control

Influent Connection Pipe

- Dry weather flow Wet Weather Flow
- Length ~1,800 ft

RLS shaft configurationcoordination with Gravity Pipeline

Figure 5-6. RLS wet well concept – section view

FoP Conceptual Flow Conditions

Flow Condition	Influent (mgd) Exist Future		Existing (mgd)	Future (mgd)
Average DWF	11.8	17.9	12-14	13-15
Peak DWF – hourly	22.5	33.9	22(1)	22(1)
Min DWF – hourly	2.7	3+	10-12	10-13
PWWF	90+	103	80	80

(1) Wet well cleaning cycle

- Gravity Pipeline flow storage
 - Dry weather diurnal flows
 - Wet weather storage above RLS Capacity

Hydraulics

FoP Conceptual Hydraulic Gradeline

EIR Status

- Draft EIR November 2016
- Comments Due January 2017 (very few comments)
- Adoption expected April 2017

Environmental Permits

- Environmental Permit Applications submitted December 2016
 - BCDC
 - California F&WS
- Expected October 2017
- SVCW anticipates obtaining its own Air Permit to construct

Funding

- SVCW has bonding capacity to obtain bonds for entire program
- SVCW is pursuing less expensive funding
 - SRF
 - WIFIA

Procurement Process and Stages of Design-Build

- Why Progressive Design Build
- RFQ/RFP
- Stage 1/Stage 2 with Phases
- Schedule

Why Progressive Design Build

- Coordinate and accelerate completion of overall Project relative to DBB delivery
- Promote a cooperative and collaborative relationship between SVCW and the PDB team
- Incorporate ongoing cost modeling and take a "design-to-budget" approach
- Flexibility for phased design and construction
- Early and ongoing staff involvement and training

RFQ/RFP Process

- Step 1:
 - RFQ issuance,
 - Pre-submittal meeting
 - Reference checking
 - Interviews with selected Respondents,
 - Shortlisting of three (or up to four) Respondents.
- Step 2:
 - RFP issuance to short-listed Respondents,
 - Pre-Proposal Meeting
 - Confidential Meetings with each short-listed Respondent
 - Reference checking
 - Interviews
 - Selection of winning Respondent
 - Negotiation of Progressive Design Build Contract
 - (Stage 2 pricing via amendment)

Stage 1/Stage 2 with Phases

- Stage 1
 - Collaboratively bring the design from a 5% to 10% level to a 60% to 70% level
 - Negotiate Stage 2 Contract Pricing and Schedule
- Stage 2
 - Final design (100%)
 - Construction
 - Testing and Start-up including 3-6 month cooperation of facilities.
- Phases
 - As needed to move project forward

Anticipated Schedule

- Issue RFQ
- SOQ Submission
- Shortlist and RFP
- Proposals Due
- Stage 1 Approval
- Stage 1 NTP
- Stage 2 Approval

Shortly after April 13 End of May Early June Late August September or October October or November Late 2018

Construction: Two to three years

Key Parts of the RFQ

- Project or RESCU Success Factors
 - A successful project is a balance of these
- Front of Plant Project Objectives
 - Collaboration and O and M involvement are key
- Availability and use of background information
 - SVCW Website Based
 - Planning reports and the EIR
 - Proposers should not be limited by the concepts shown
- Required elements of SOQ

RESCU Success Factors

"Success" - collaboratively implementing an appropriate balance of the following:

- Cost: Provide a complete functional conveyance system that meets the goals of the Program at the lowest practical capital and lifecycle cost.
- Operations: Produce projects that are easy, efficient, and effective to operate.
- Maintenance: Produce projects that minimize required maintenance.
- **Safety:** Implement projects that are safe to construct, operate, and maintain.
- Schedule: Place new wastewater conveyance system projects into operation with best practical safe speed, while maintaining the present level of service with existing facilities.
- Stakeholder Impacts: Solicit, evaluate, and respond to stakeholder's concerns, and implement a Program that best meets the combined needs of stakeholders while reaching the Program's goals.

RESCU Success Factors

"Success" - collaboratively implementing an appropriate balance of the following:

- Cost: Provide a complete functional conveyance system that meets the goals of the Program at the lowest process.
 Cost.
- **Operations:** Produce projects that operate.
- Maintenance: Produce proje
- Safety: Implement projection of the safe to construct, operate, and maintain.
- Schedule: Place n operation with be present level of s

water conveyance system projects into acal safe speed, while maintaining the with existing facilities.

 Stakeholder Impacts: Solicit, evaluate, and respond to stakeholder's concerns, and implement a Program that best meets the combined needs of stakeholders while reaching the Program's goals.

encient, and effective to

mize required maintenance.

Front of Plant Project Objectives

- **Quality**: Provide a FoP that will be sustainable over 50 years and will reliably receive, convey and wastewater flows ranging from 2 mgd to 103 mgd in full compliance with environmental requirements.
- **Cost:** Provide complete functional facilities that meet the goals of the Project at the **lowest** practical capital and lifecycle cost. Provide early and ongoing cost predictability.
- Schedule: Bring new facilities online as soon as practicle so that the existing failing pipeline and pump stations can be taken out of operation as early as reasonably possible.
- **Risk:** Generally assign to the Design-Builder the risks that the Design-Builder can reasonably anticipate and control. Assign to SVCW the risks that the Design-Builder cannot reasonably anticipate and control.
- **Safety:** Implement an effective safety program incorporating **best practice industry practices**.
- Accountability: Design-Builder to provide for a single point of accountability for performance of all services under Stage 1 and Stage 2. SVCW to provide a single point of accountability for all direction to the Design-Builder.
- **Collaboration**: Implement an **integrated design process** that collaboratively includes SVCW management, engineering, **operations and maintenance** as well as the Design-Build contractor and engineer to develop a design that **optimally achieves SVCW success factors and FoP requirements**.
- Innovation: Apply proven technology from other locations to uniquely achieve FoP goals.

Front of Plant Project Objectives

- **Quality**: Provide a FoP that will be sustainable over **50** years and will reliably receive, convey and wastewater flows ranging from 2 mgd to 103 mgd in full compliance with environmental requirements.
- **Cost:** Provide complete functional facilities that meet the goals of the Project at the lowest practical capital and lifecycle cost. Provide early and a ost predictability.
- Schedule: Bring new facilities online as soon as practi ٠ and pump stations can be taken out of operation
- **Risk:** Generally assign to the Design-Builder the ALANCE anticipate and control. Assign to SVCW the anticipate and control.
- Safety: Implement an effective safety practices.
- Accountability: Design-Builder performance of all services accountability for all dire
- **Collaboration**: Impleme grated design process that collaboratively includes SVCW ations and maintenance as well as the Design-Build management, engineeri contractor and engineer to develop a design that optimally achieves SVCW success factors and FoP requirements.
- **Innovation:** Apply proven technology from other locations to uniquely achieve FoP goals.

Regional Environmental Sewer Conveyance Upgrade

the existing failing pipeline asonably possible.

ne esign-Builder can reasonably e Design-Builder cannot reasonably

corporating best practice industry

or a single point of accountability for

T and Stage 2. SVCW to provide a single point of Øesign-Builder.

Required Elements in RFQ

- Team structure
 - (responsible designers and construction principles for the RLS, Headworks and Odor Control Systems)
- Key personnel and resumes for above
- Experience collaborating with owners
- Experience coordinating with other projects
- Experience collaborating with Operations and Maintenance
- Demonstrated methods of delivered project safety

Pass fail items, financial, insurance, bonding, etc.

Estimates, Budgets and Pricing

• Budget vs Current Cost Estimate

Design to budget

- Firm Lump Sum for Stage 1-Preconstruction
- Markups for Stage 2
- Indicative Pricing for Stage 2-Construction
 - Based on project as currently defined in EIR
 - Indicative pricing not planned to be used in scoring

Focus Areas during early PDB Preconstruction Services (Stage 1)

- RLS shaft coordination with Gravity Pipeline
- Equipment configuration and sizing
- Hydraulic conditions
- Final Diameter of Gravity Pipeline
- Shaft configuration, structural needs, construction timing and access
- Connection point to WWTP
- Early online use of Headworks
- Project cost and schedule

Project Cost and Schedule

- Reduce FoP cost
- Accelerate FoP schedule
- Achieve 50 year service life
- Achieve diurnal and wet weather equalization

Available at SVCW.ORG

- Now
 - Draft EIR
 - Previous (and Today's) Presentations
 - Notice to Prospective Designers and Contractors
 - List of Ineligible Firms and Required Firm
- At RFQ Issuance
 - Project Planning Reports
 - Geotechnical Data
 - Includes detailed cost estimates; capital and life cycle
 - Details current outstanding issues

Front of Plant Site Tour PPE Required

Owned by SVCW

Headworks and RLS facilities here

N

ICP connection

Point

Gravel pathway leads to RLS Shaft location with groundwater monitoring wells on each side of shaft

Construction only past this point

Google earth

New access road and parking

More questions?

FrontofPlant@svcw.org

Thank you for your interest!

